Resonator Bandwidth in Terms of Pole Radius Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Resonator Bandwidth in Terms of Pole Radius

The magnitude $ R$ of a complex pole determines the damping or bandwidth of the resonator. (Damping may be defined as the reciprocal of the bandwidth.)

When $ R$ is close to 1, a reasonable definition of bandwidth $ B$ is provided by

$\displaystyle B$ $\displaystyle \isdef$ $\displaystyle - \frac{\ln(R)}{\pi T}$ (11.4)
$\displaystyle R$ $\displaystyle =$ $\displaystyle e^{- \pi B T}
\protect$ (11.5)

where $ R$ is the pole radius, $ B$ is the bandwidth in Hertz (cycles per second), and $ T$ is the sampling interval in seconds. It can be shown (§C.6) that $ B$ under this definition is approximately equal to the 3-dB bandwidth (or half-power bandwidth) of the resonator.

Figure 10.7 shows a family of frequency responses for the two-pole resonator obtained by setting $ b_0 = 1$ and varying $ R$. The value of $ \theta _c$, in all cases is $ \pi /4$, corresponding to $ f_c =
f_s/8$. The analytic expressions for amplitude and phase response are

\begin{eqnarray*}
G(\omega)\! &=&
\!\frac{b_0}{\sqrt{[1 + a_1 \cos(\omega T) + a...
... + a_1 \cos(\omega T) + a_2 \cos(2\omega T)}\right]\qquad(b_0>0)
\end{eqnarray*}

where $ a_1 = - 2R \cos(\theta_c)$ and $ a_2 = R^2$.

Figure 10.7: Frequency response of the two-pole filter
$ y(n) = x(n) + 2R \cos (\theta _c) y(n - 1) - R^2 y(n - 2)$
with $ \theta _c$ fixed at $ \pi /4$ and for various values of $ R$. (a) Amplitude response. (b) Phase response.
\begin{figure}\input fig/kfig2p23.pstex_t
\end{figure}


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (August 2006 Edition).
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]