Transposition of a State Space Model Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Transposition of a State Space Model

Above, we found the transfer function of the general state-space model to be

$\displaystyle H(z) = D + C \left(zI - A\right)^{-1}B.
$

By the rules for transposing a matrix, the transpose of this equation gives

$\displaystyle H^T(z) = D^T + B^T \left(zI - A^T\right)^{-1}C^T.
$

The system $ (A^T,C^T,B^T,D^T)$ may be called the transpose of the system $ (A,B,C,D)$. The transpose is obtained by interchanging $ B$ and $ C$ in addition to transposing all matrices.

When there is only one input and output signal (the SISO case), $ H(z)$ is a scalar, as is $ D$. In this case we have

$\displaystyle H(z) = D + B^T \left(zI - A^T\right)^{-1}C^T.
$

That is, the transfer function of the transposed system is the same as the untransposed system in the scalar case. It can be shown that transposing the state-space representation is equivalent to transposing the signal flow graph of the filter [72]. The equivalence of a flow graph to its transpose is established by Mason's gain theorem [49,50]. See §9.1.3 for more on this topic.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (August 2006 Edition).
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]