Internet Draft

Network Working Group                                      Eric C. Rosen
Internet Draft                                             Yakov Rekhter
Expiration Date: September 2000                      Cisco Systems, Inc.

                                                    Stephen John Brannon
                                                   Monique Jeanne Morrow
                                                             Swisscom AG

                                                            Marco Carugi
                                                          France Telecom

                                                    Christopher J. Chase
                                                                    AT&T

                                                               Eric Dean
                                                              Global One

                                                            Paul Hitchin
                                                            Adrian Smith
                                                                      BT

                                                        Manoj Leelanivas
                                                  Juniper Networks, Inc.

                                                            Luca Martini
                                             Level 3 Communications, LLC

                                                        Vijay Srinivasan
                                              Ericsson IP Infrastructure

                                                          Alain Vedrenne
                                                             SITA EQUANT

                                                              March 2000


                             BGP/MPLS VPNs


                     draft-rosen-rfc2547bis-00.txt

Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that



Rosen, et al.                                                   [Page 1]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.


Copyright Notice

      Copyright (C) The Internet Society (2000).  All Rights Reserved.


Abstract

   This document describes a method by which a Service Provider may use
   an IP backbone to provide VPNs for its customers.  MPLS is used for
   forwarding packets over the backbone, and BGP is used for
   distributing routes over the backbone.  The primary goal of this
   method is to support the case in which a client obtains IP backbone
   services from a Service Provider or Service Providers with which it
   maintains contractual relationships.  The client may be an
   enterprise, a group of enterprises which need an extranet, an
   Internet Service Provider, another VPN Service Provider (even one
   which uses this same method to offer VPNs to clients of its own), an
   application service provider, etc.  The method makes it very simple
   for the client to use the backbone services.  It is also very
   scalable and flexible for the Service Provider, and allows the
   Service Provider to add value.

   This document obsoletes RFC 2547.













Rosen, et al.                                                   [Page 2]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000




Table of Contents

    1          Introduction  .......................................   3
    1.1        Virtual Private Networks  ...........................   4
    1.2        Edge Devices  .......................................   5
    1.3        VPNs with Overlapping Address Spaces  ...............   6
    1.4        VPNs with Different Routes to the Same System  ......   6
    1.5        Multiple Forwarding Tables in PEs  ..................   7
    1.6        SP Backbone Routers  ................................   7
    1.7        Security  ...........................................   8
    2          Sites and CEs  ......................................   8
    3          VRFs: Per-Site Forwarding Tables in the PEs  ........   9
    3.1        Virtual Sites  ......................................  10
    4          VPN Route Distribution via BGP  .....................  11
    4.1        The VPN-IPv4 Address Family  ........................  11
    4.2        Encoding of Route Distinguishers  ...................  12
    4.3        Controlling Route Distribution  .....................  13
    4.3.1      The Route Target Attribute  .........................  13
    4.3.2      Route Distribution Among PEs by BGP  ................  15
    4.3.3      How VPN-IPv4 NLRI is Carried in BGP  ................  18
    4.3.4      Building VPNs using Route Targets  ..................  18
    5          Forwarding Across the Backbone  .....................  19
    6          How PEs Learn Routes from CEs  ......................  20
    7          How CEs learn Routes from PEs  ......................  23
    8          Carriers' Carriers  .................................  24
    9          Security  ...........................................  24
   10          Quality of Service  .................................  25
   11          Scalability  ........................................  25
   12          Intellectual Property Considerations  ...............  26
   13          Acknowledgments  ....................................  26
   14          Authors' Addresses  .................................  26
   15          References  .........................................  29
   16          Full Copyright Statement  ...........................  29




1. Introduction











Rosen, et al.                                                   [Page 3]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


1.1. Virtual Private Networks

   Consider a set of "sites" which are attached to a common network
   which we may call the "backbone". Let's apply some policy to create a
   number of subsets of that set, and let's impose the following rule:
   two sites may have IP interconnectivity over that backbone only if at
   least one of these subsets contains them both.

   The subsets we have created are "Virtual Private Networks" (VPNs).
   Two sites have IP connectivity over the common backbone only if there
   is some VPN which contains them both.  Two sites which have no VPN in
   common have no connectivity over that backbone.

   If all the sites in a VPN are owned by the same enterprise, the VPN
   is a corporate "intranet".  If the various sites in a VPN are owned
   by different enterprises, the VPN is an "extranet".  A site can be in
   more than one VPN; e.g., in an intranet and several extranets.  We
   regard both intranets and extranets as VPNs. In general, when we use
   the term VPN we will not be distinguishing between intranets and
   extranets.

   We wish to consider the case in which the backbone is owned and
   operated by one or more Service Providers (SPs).  The owners of the
   sites are the "customers" of the SPs.  The policies that determine
   whether a particular collection of sites is a VPN are the policies of
   the customers.  Some customers will want the implementation of these
   policies to be entirely the responsibility of the SP.  Other
   customers may want to implement these policies themselves, or to
   share with the SP the responsibility for implementing these policies.
   In this document, we are primarily discussing mechanisms that may be
   used to implement these policies.  The mechanisms we describe are
   general enough to allow these policies to be implemented either by
   the SP alone, or by a VPN customer together with the SP.  Most of the
   discussion is focused on the former case, however.

   The mechanisms discussed in this document allow the implementation of
   a wide range of policies. For example, within a given VPN, we can
   allow every site to have a direct route to every other site ("full
   mesh"), or we can restrict certain pairs of sites from having direct
   routes to each other ("partial mesh").

   In this document, we are interested in the case where the common
   backbone offers an IP service.  We are NOT focused on the case where
   the common backbone is part of the public Internet, but rather on the
   case where it the backbone network of an SP or set of SPs with which
   the customer maintains contractual relationships.  The customer
   should be thought of as purchasing VPN service from the SP, not
   merely as purchasing Internet access from it.  The customer itself



Rosen, et al.                                                   [Page 4]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   may be a single enterprise, a set of enterprises needing an extranet,
   an Internet Service Provider, or even another SP which offers the
   same kind of VPN service to its own customers.

   In the rest of this introduction, we specify some properties which
   VPNs should have.  The remainder of this document outlines a VPN
   model which has all these properties.


1.2. Edge Devices

   We suppose that at each site, there are one or more Customer Edge
   (CE) devices, each of which is attached via some sort of data link
   (e.g., PPP, ATM, ethernet, Frame Relay, GRE tunnel, etc.)  to one or
   more Provider Edge (PE) routers.  Routers in the Provider's network
   which do not attach to CE devices are known as "P routers".

   If a particular site has a single host, that host may be the CE
   device.  If a particular site has a single subnet, the CE device may
   be a switch.  In general, the CE device can be expected to be a
   router, which we call the CE router.

   We will say that a PE router is attached to a particular VPN if it is
   attached to a CE device which is in that VPN.  Similarly, we will say
   that a PE router is attached to a particular site if it is attached
   to a CE device which is in that site.

   When the CE device is a router, it is a routing peer of the PE(s) to
   which it is attached, but is not a routing peer of CE routers at
   other sites.  Routers at different sites do not directly exchange
   routing information with each other; in fact, they do not even need
   to know of each other at all. As a consequence, very large VPNs
   (i.e., VPNs with a very large number of sites) are easily supported,
   while the routing strategy for each individual site is greatly
   simplified.

   It is important that the scheme allow clear administrative boundaries
   to be maintained between the SP and its customers.  There is no
   requirement for the PE or P routers to be managed by the customers,
   or for the CE devices to be managed by the SP.











Rosen, et al.                                                   [Page 5]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


1.3. VPNs with Overlapping Address Spaces

   We assume that any two non-intersecting VPNs (i.e., VPNs with no
   sites in common) may have overlapping address spaces; the same
   address may be reused, for different systems, in different VPNs.
   (This allows the SP to support the common case of VPNs which use the
   RFC1918 addressing space, for example.) As long as a given endsystem
   has an address which is unique within the scope of the VPNs that it
   belongs to, the endsystem itself does not need to know anything about
   VPNs.

   In this model, the VPN owners do not have a backbone to administer,
   not even a "virtual backbone." Nor do the SPs have to administer a
   separate backbone or "virtual backbone" for each VPN.  Site-to-site
   routing in the backbone is optimal (within the constraints of the
   policies used to form the VPNs), and is not constrained in any way by
   an artificial "virtual topology" of tunnels.


1.4. VPNs with Different Routes to the Same System

   Although a site may be in multiple VPNs, it is not necessarily the
   case that the route to a given system at that site should be the same
   in all the VPNs.  Suppose, for example, we have an intranet
   consisting of sites A, B, and C, and an extranet consisting of A, B,
   C, and the "foreign" site D.  Suppose that at site A there is a
   server, and we want clients from B, C, or D to be able to use that
   server.  Suppose also that at site B there is a firewall.  We want
   all the traffic from site D to the server to pass through the
   firewall, so that traffic from the extranet can be access controlled.
   However, we don't want traffic from C to pass through the firewall on
   the way to the server, since this is intranet traffic.

   This means that it needs to be possible to set up two routes to the
   server.  One route, used by sites B and C, takes the traffic directly
   to site A.  The second route, used by site D, takes the traffic
   instead to the firewall at site B.  If the firewall allows the
   traffic to pass, it then appears to be traffic coming from site B,
   and follows the route to site A.












Rosen, et al.                                                   [Page 6]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


1.5. Multiple Forwarding Tables in PEs

   Each PE router needs to maintain a number of separate forwarding
   tables.  Every site to which the PE is attached must be mapped to one
   of those forwarding tables.  When a packet is received from a
   particular site, the forwarding table associated with that site is
   consulted in order to determine how to route the packet.  The
   forwarding table associated with a particular site S is populated
   only with routes that lead to other sites which have at least one VPN
   in common with S. This prevents communication between sites which
   have no VPN in common, and it allows two VPNs with no site in common
   to use address spaces that overlap with each other.


1.6. SP Backbone Routers

   The SP's backbone consists of the PE routers, as well as other
   routers ("P routers") which do not attach to CE devices.

   If every router in an SP's backbone had to maintain routing
   information for all the VPNs supported by the SP, this model would
   have severe scalability problems; the number of sites that could be
   supported would be limited by the amount of routing information that
   could be held in a single router.  It is important therefore that the
   routing information about a particular VPN is only required to be
   present in those PE routers which attach to that VPN.  In particular,
   the P routers should not need to have ANY per-VPN routing information
   whatsoever.  (This condition may need to be relaxed somewhat when
   multicast routing is considered.  This is hnot considered further in
   this paper.)

   VPNs may span multiple service providers. There are a number of
   possible methods for implementing this.

   In one approach, when the path between PE routers crosses a boundary
   between SP networks, the ASBRs use EBGP to exchange VPN-IPv4 routes,
   and label switched paths cross the boundary between providers.  The
   presupposition is that this is done via a private peering
   arrangement, at which there exists mutual trust between the two
   providers. In particular, each provider must trust the other to pass
   it only correct routing information, and to pass it labeled (in the
   sense of MPLS [MPLS-ARCH]) packets only if those packets have been
   labeled by trusted sources.  A variety of other approaches are also
   possible.







Rosen, et al.                                                   [Page 7]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


1.7. Security

   A VPN model should, even without the use of cryptographic security
   measures, provide a level of security equivalent to that obtainable
   when a level 2 backbone (e.g., Frame Relay) is used.  That is, in the
   absence of misconfiguration or deliberate interconnection of
   different VPNs, it should not be possible for systems in one VPN to
   gain access to systems in another VPN.


2. Sites and CEs

   From the perspective of a particular backbone network, a set of IP
   systems constitutes a site if those systems have mutual IP
   interconnectivity, and communication between them occurs without use
   of the backbone. In general, a site will consist of a set of systems
   which are in geographic proximity.  However, this is not universally
   true.  If two geographic locations are connected via a leased line,
   over which OSPF is running, and if that line is the preferred way of
   communicating between the two locations, then the two locations can
   be regarded as a single site, even if each location has its own CE
   router.

   A CE device is always regarded as being in a single site (though as
   we shall see, a site may consist of multiple "virtual sites"). A
   site, however, may belong to multiple VPNs.

   A PE router may attach to CE devices in any number of different
   sites, whether those CE devices are in the same or in different VPNs.
   A CE device may, for robustness, attach to multiple PE routers, of
   the same or of different service providers.  If the CE device is a
   router, the PE router and the CE router will appear as router
   adjacencies to each other.

   While the basic unit of interconnection is the site, the architecture
   described herein allows a finer degree of granularity in the control
   of interconnectivity. For example, certain systems at a site may be
   members of an intranet as well as members of one or more extranets,
   while other systems at the same site may be restricted to being
   members of the intranet only.











Rosen, et al.                                                   [Page 8]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


3. VRFs: Per-Site Forwarding Tables in the PEs

   Each PE router maintains one or more "per-site forwarding tables."
   These are known as VRFs, or "VPN Routing and Forwarding" tables.
   Every site to which the PE router is attached is associated with one
   of these tables.  A particular packet's IP destination address is
   looked up in a particular VRF only if that packet has arrived
   directly from a site which is associated with that table.

   How are the VRFs populated?

   As an example, let PE1, PE2, and PE3 be three PE routers, and let
   CE1, CE2, and CE3 be three CE routers. Suppose that PE1 learns, from
   CE1, the routes which are reachable at CE1's site.  If PE2 and PE3
   are attached respectively to CE2 and CE3, and there is some VPN V
   containing CE1, CE2, and CE3, then PE1 uses BGP to distribute to PE2
   and PE3 the routes which it has learned from CE1.  PE2 and PE3 use
   these routes to populate the VRFs which they associate respectively
   with the sites of CE2 and CE3.  Routes from sites which are not in
   VPN V do not appear in these VRFs, which means that packets from CE2
   or CE3 cannot be sent to sites which are not in VPN V.

   If a site is in multiple VPNs, the VRF associated with that site can
   contain routes from the full set of VPNs of which the site is a
   member.

   A PE generally associates only one VRF to each site, even if it is
   multiply connected to that site.  However, different sites can share
   the same VRF if they are meant to use exactly the same set of routes.

   Routes from the Internet do not need to be present in the VRF
   associated with a given interface, even if the SP is providing
   Internet access over that interface.  There are two basic methods for
   providing Internet access over an interface that is associated with a
   VRF:

      1. The VRF may contain a default route which leads to a firewall.
         This ensures that packets headed towards the Internet are
         always passed through a firewall first.

      2. If a packet is received over a particular interface, and its
         destination address does not match any entry in the VRF, then
         the packet's destination address may be matched against the
         PE's Internet forwarding table.  This can be useful if the
         packets have already been through a firewall, for instance.
         Note that only one Internet forwarding table per PE is needed
         in this case; the Internet routes do not need to be present in
         the VRFs.



Rosen, et al.                                                   [Page 9]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   Of course, if Internet access is not provided over a particular
   interface, and the packet's destination address has no match in the
   associated VRF, the packet is treated as undeliverable.

   The VRFs in a PE are ONLY used for packets which arrive from a site
   which is directly attached to the PE.  They are not used for routing
   packets which arrive from other routers that belong to the SP
   backbone.  As a result, there may be multiple different routes to the
   same system, where the route followed by a given packet is determined
   by the site from which the packet enters the backbone.  E.g., one may
   have one route to a given system for packets from the extranet (where
   the route leads to a firewall), and a different route to the same
   system for packets from the intranet (including packets that have
   already passed through the firewall).


3.1. Virtual Sites

   In some cases, a particular site may be divided by the customer into
   several virtual sites, perhaps by the use of VLANs.  Each virtual
   site may be a member of a different set of VPNs. The PE then needs to
   contain a separate VRF for each virtual site.  For example, if a CE
   supports VLANs, and wants each VLAN mapped to a separate VPN, the
   packets sent between CE and PE could be contained in the site's VLAN
   encapsulation.  Then the VLAN tag could be used by the PE, along with
   the interface over which the packet is received, to assign the packet
   to a particular VPN.

   Alternatively, one could divide the interface into multiple "sub-
   interfaces" (particularly if the interface is Frame Relay or ATM),
   and assign the packet to a VPN based on the sub-interface over which
   it arrives.  Or one could simply use a different interface for each
   virtual site.  In any case, only one CE router is ever needed per
   site, even if there are multiple virtual sites.  Of course, a
   different CE router could be used for each virtual site, if that is
   desired.

   Note that in all these cases, the mechanisms, as well as the policy,
   for controlling which traffic is in which VPN are in the hand of the
   customer.

   If it is desired to have a particular host be in multiple virtual
   sites, then that host must determine, for each packet, which virtual
   site the packet is associated with.  It can do this, e.g., by sending
   packets from different virtual sites on different VLANs, our out
   different network interfaces.





Rosen, et al.                                                  [Page 10]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


4. VPN Route Distribution via BGP

   PE routers use BGP to distribute VPN routes to each other (more
   accurately, to cause VPN routes to be distributed to each other).

   We allow each VPN to have its own address space, which means that a
   given address may denote different systems in different VPNs.  If two
   routes, to the same IP address prefix, are actually routes to
   different systems, it is important to ensure that BGP not treat them
   as comparable.  Otherwise BGP might choose to install only one of
   them, making the other system unreachable.  Further, we must ensure
   that POLICY is used to determine which packets get sent on which
   routes; given that several such routes are installed by BGP, only one
   such must appear in any particular VRF.

   We meet these goals by the use of a new address family, as specified
   below.


4.1. The VPN-IPv4 Address Family

   The BGP Multiprotocol Extensions [BGP-MP] allow BGP to carry routes
   from multiple "address families".  We introduce the notion of the
   "VPN-IPv4 address family".  A VPN-IPv4 address is a 12-byte quantity,
   beginning with an 8-byte "Route Distinguisher (RD)" and ending with a
   4-byte IPv4 address.  If two VPNs use the same IPv4 address prefix,
   the PEs translate these into unique VPN-IPv4 address prefixes.  This
   ensures that if the same address is used in two different VPNs, it is
   possible to install two completely different routes to that address,
   one for each VPN.

   The RD does not by itself impose any semantics; it contains no
   information about the origin of the route or about the set of VPNs to
   which the route is to be distributed.  The purpose of the RD is
   solely to allow one to create distinct routes to a common IPv4
   address prefix.  Other means are used to determine where to
   redistribute the route (see section 4.2).

   The RD can also be used to create multiple different routes to the
   very same system.  In section 3, we gave an example where the route
   to a particular server had to be different for intranet traffic than
   for extranet traffic.  This can be achieved by creating two different
   VPN-IPv4 routes that have the same IPv4 part, but different RDs.
   This allows BGP to install multiple different routes to the same
   system, and allows policy to be used (see section 4.2.3) to decide
   which packets use which route.

   The RDs are structured so that every service provider can administer



Rosen, et al.                                                  [Page 11]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   its own "numbering space" (i.e., can make its own assignments of
   RDs), without conflicting with the RD assignments made by any other
   service provider.  An RD consists of a two-byte type field, an
   administrator field, and an assigned number field.  The value of the
   type field determines the lengths of the other two fields, as well as
   the semantics of the administrator field.  The administrator field
   identifies an assigned number authority, and the assigned number
   field contains a number which has been assigned, by the identified
   authority, for a particular purpose.  For example, one could have an
   RD whose administrator field contains an Autonomous System number
   (ASN), and whose (4-byte) number field contains a number assigned by
   the SP to whom IANA has assigned that ASN.

   RDs are given this structure in order to ensure that an SP which
   provides VPN backbone service can always create a unique RD when it
   needs to do so. However, the structuring provides no semantics. When
   BGP compares two such address prefixes, it ignores the structure
   entirely.

   Note that VPN-IPv4 addresses and  IPv4 addresses are always
   considered by BGP to be incomparable.

   A VRF may have multiple equal cost VPN-IPv4 routes for a single IPv4
   address prefix.  When a packet's destination address is matched
   against a VPN-IPv4 route, only the IPv4 part is actually matched.

   A PE needs to be configured to associate routes which lead to
   particular CE with a particular RD.  The PE may be configured to
   associate all routes leading to the same CE with the same RD, or it
   may be configured to associate different routes with different RDs,
   even if they lead to the same CE.


4.2. Encoding of Route Distinguishers

   As stated, a VPN-IPv4 address consists of an 8-byte Route
   Distinguisher followed by a 4-byte IPv4 address.  The RDs are encoded
   as follows:

     - Type Field: 2 bytes
     - Value Field: 6 bytes

   The interpretation of the Value field depends on the value of the
   Type field. At the present time, two values of the type field are
   defined: 0 and 1.






Rosen, et al.                                                  [Page 12]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


     - Type 0: The Value field consists of two subfields:

         * Administrator subfield: 2 bytes
         * Assigned Number subfield: 4 bytes

       The Administrator subfield must contain an Autonomous System
       number. If this ASN is from the public ASN space, it must have
       been assigned by IANA (use of ASN values from the private ASN
       space is strongly discouraged).  The Assigned Number subfield
       contains a number from a numbering space which is administered by
       the enterprise to which the ASN has been assigned by IANA.

     - Type 1: The Value field consists of two subfields:

         * Administrator subfield: 4 bytes
         * Assigned Number subfield: 2 bytes

       The Administrator subfield must contain an IP address. If this IP
       address has been assigned by IANA to a particular enterprise, the
       Assigned Number sub-field contains a number from a numbering
       space which is administered by the enterprise to which the IP
       address has been assigned (use of addresses from the private IP
       address space is strongly discouraged).


4.3. Controlling Route Distribution

   In this section, we discuss the way in which the distribution of the
   VPN-IPv4 routes is controlled.


4.3.1. The Route Target Attribute

   Every VRF is associated with one or more "Route Target" attributes.

   When a VPN-IPv4 route is created by a PE router, it is associated
   with one or more "Route Target" attributes.  These are carried in BGP
   as attributes of the route.

   Any route associated with Route Target T must be distributed to every
   PE router that has a VRF associated with Route Target T.  When such a
   route is received by a PE router, it is eligible to be installed in
   each of the PE's VRFs that is associated with Route Target T.
   (Whether it actually gets installed depends on the outcome of the BGP
   decision process.)

   A Route Target attribute can be thought of as identifying a set of
   sites.  (Though it would be more precise to think of it as



Rosen, et al.                                                  [Page 13]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   identifying a set of VRFs.)  Associating a particular Route Target
   attribute with a route allows that route to be placed in the VRFs
   that are used for routing traffic which is received from the
   corresponding sites.

   There is a set of Route Targets that a PE router attaches to a route
   received from site S; these may be called the "Export Targets". And
   there is a set of Route Targets that a PE router uses to determine
   whether a route received from another PE router could be placed in
   the VRF associated with site S; these may be called the "Import
   Targets". The two sets are distinct, and need not be the same.  Note
   that a particular VPN-IPv4 route is only eligible for installation in
   a particular VRF if there is some Route Target which is both one of
   the route's Route Targets and one of the VRF's Import Targets.

   The function performed by the Route Target attribute is similar to
   that performed by the BGP Communities Attribute.  However, the format
   of the latter is inadequate, since it allows only a two-byte
   numbering space.  It is desirable to structure the format, similar to
   what we have described for RDs (see section 4.1), so that a type
   field defines the length of an administrator field, and the remainder
   of the attribute is a number from the specified administrator's
   numbering space.  This can be done using BGP Extended Communities.
   The Route Targets discussed herein are encoded as BGP Extended
   Community Route Targets [BGP-EXTCOMM].

   When a BGP speaker has received more than one route to the same VPN-
   IPv4 prefix, the BGP rules for route preference are used to choose
   which route are installed.

   Note that a route can only have one RD, but it can have multiple
   Route Targets.  In BGP, scalability is improved if one has a single
   route with multiple attributes, as opposed to multiple routes.  One
   could eliminate the Route Target attribute by creating more routes
   (i.e., using more RDs), but the scaling properties would be less
   favorable.

   How does a PE determine which Route Target attributes to associate
   with a given route?  There are a number of different possible ways.
   The PE might be configured to associate all routes that lead to a
   particular site with a particular Route Target.  Or the PE might be
   configured to associate certain routes leading to a particular site
   with one Route Target, and certain with another.  Or the CE router,
   when it distributes these routes to the PE (see section 6), might
   specify one or more Route Targets for each route.  The latter method
   shifts the control of the mechanisms used to implement the VPN
   policies from the SP to the customer.  If this method is used, it may
   still be desirable to have the PE eliminate any Route Targets that,



Rosen, et al.                                                  [Page 14]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   according to its own configuration, are not allowed, and/or to add in
   some Route Targets that according to its own configuration are
   mandatory.


4.3.2. Route Distribution Among PEs by BGP

   If two sites of a VPN attach to PEs which are in the same Autonomous
   System, the PEs can distribute VPN-IPv4 routes to each other by means
   of an IBGP connection between them.  Alternatively, each can have an
   IBGP connection to a route reflector.

   What if two sites of a VPN are in different Autonomous Systems (e.g.,
   because they are connected to different SPs)?  One way to handle this
   is to have the PE routers use IBGP to redistribute VPN-IPv4 routes
   either to an Autonomous System Border Router (ASBR), or to a route
   reflector of which an ASBR is a client.  The ASBR then needs to use
   EBGP to redistribute those routes to an ASBR in another AS.  This
   allows one to connect different VPN sites to different Service
   Providers.  However, VPN-IPv4 routes should only be accepted on EBGP
   connections at private peering points, as part of a trusted
   arrangement between SPs.  VPN-IPv4 routes should neither be
   distributed to nor accepted from the public Internet.

   If there are many VPNs having sites attached to different Autonomous
   Systems, there does not need to be a single ASBR between those two
   ASes which holds all the routes for all the VPNs; there can be
   multiple ASBRs, each of which holds only the routes for a particular
   subset of the VPNs.

   There are other ways of handling the multi-provider case as well.
   For example, something similar to the Carrier's Carrier architecture
   described in section 8 can be used.  The PE routers could only
   distribute their internal routes to the ASBRs, and PE routers in
   different ASes could form multi-hop EBGP connections to distribute
   their external routes.

   When a PE router distributes a VPN-IPv4 route via BGP, it uses its
   own address as the "BGP next hop".  This address is encoded as a
   VPN-IPv4 address with an RD of 0.  ([BGP-MP] requires that the next
   hop address be in the same address family as the NLRI.)  It also
   assigns and distributes an MPLS label.  (Essentially, PE routers
   distribute not VPN-IPv4 routes, but Labeled VPN-IPv4 routes. Cf.
   [MPLS-BGP]) When the PE processes a received packet that has this
   label at the top of the stack, the PE will pop the stack, and send
   the packet directly to the site from to which the route leads.  This
   will usually mean that it just sends the packet to the CE router from
   which it learned the route.  The label may also determine the data



Rosen, et al.                                                  [Page 15]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   link encapsulation.

   In most cases, the label assigned by a PE will cause the packet to be
   sent directly to a CE, and the PE which receives the labeled packet
   will not look up the packet's destination address in any VRF.
   However, it is also possible for the PE to assign a label which
   implicitly identifies a particular VRF.  In this case, the PE
   receiving a packet with that label would look up the packet's
   destination address in the associated VRF.  This allows the route
   distributed and labeled by BGP to be an aggregate of several routes
   which appear in the VRF.  This can be very useful if the VRF contains
   a large number of host routes (e.g., as in dial-in), or if the VRF
   has an associated LAN interface (where there is a different outgoing
   layer 2 header for each system on the LAN, but a route is not
   distributed for each such system).  However, we do not consider this
   further in this paper.

   Note that the MPLS label that is distributed in this way is only
   usable if there is a label switched path between the router that
   installs a route and the BGP next hop of that route. It may be a
   "best effort" route, or it may be a traffic engineered route.
   Between a particular PE router and its BGP next hop for a particular
   route there may be one label switched path, or there may be several,
   perhaps with different QoS characteristics.  All that matters for the
   VPN architecture is that some label switched path between the router
   and its BGP next hop exists.  However, to ensure interoperability
   among systems which implement this VPN architecture, all such systems
   must support LDP [MPLS-LDP].

   All the usual techniques for using route reflectors [BGP-RR] to
   improve scalability, e.g., route reflector hierarchies, are
   available.  If route reflectors are used, there is no need to have
   any one route reflector know all the VPN-IPv4 routes for all the VPNs
   supported by the backbone. The following outlines two possible
   approaches to partition all the VPN-IPv4 routes among the route
   reflectors.

   In the first approach each route reflector is preconfigured with a
   list of Route Targets. For redundancy more than one route reflector
   may be preconfigured with the same list. A route reflector uses the
   preconfigured list of Route Targets to construct its inbound route
   filtering.  On all of its IBGP peers (regardless of whether the peer
   is another route reflector, or a PE), the route reflector may use the
   techniques of [BGP-ORF] to install on its peer route reflectors the
   set of "Outbound Route Filters" (ORFs) that contain the list of its
   preconfigured Route Targets. Note that route reflectors should accept
   ORFs from other route reflectors, which means that route reflectors
   should advertise the ORF capability to other route reflectors.



Rosen, et al.                                                  [Page 16]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   A service provider may modify the list of preconfigured Route Targets
   on a route reflector. When this is done, the route reflector modifies
   the ORFs it installs on all of its IBGP peers. To reduce the
   frequency of configuration changes on route reflectors, each route
   reflector may be preconfigured with a block of Route Targets.  This
   way, when a new Route Target is needed for a new VPN, there is
   already one or more route reflectors that are (pre)configured with
   this Route Target.

   Unless a given PE is a client of all route reflectors, adding a new
   VPN to the PE may require the PE to become a client of the route
   reflector(s) that maintain routes for that VPN. Likewise, deleting an
   existing VPN from the PE may result in a situation where the PE no
   longer need to be a client of some route reflector(s).

   In the second approach each PE is a client of some subset of route
   reflectors. A route reflector is not preconfigured with the list of
   Route Targets, and does not perform inbound route filtering of routes
   received from its clients (PEs); rather it accepts all the routes
   received from all of its clients (PEs).  The route reflector keeps
   track of the set of the Route Targets carried by all the routes it
   receives.  When the route reflector receives from its client a route
   with a Route Target that is not in this set, this Route Target is
   immediately added to the set. On the other hand, when the route
   reflector no longer has any routes with a particular Route Target
   that is in the set, the route reflector should delay (by a few hours)
   the deletion of this Route Target from the set.

   The route reflector uses this set to form the inbound route filters
   that it applies to routes received from other route reflectors. The
   route reflector may also use ORFs to install the appropriate outbound
   route filtering on other route reflectors. Just like with the first
   approach, a route reflector should accept ORFs from other route
   reflectors. To accomplish this, a route reflector advertises ORF
   capability to other route reflectors.

   When the route reflector changes the set, it should immediately
   change its inbound route filtering. In addition, if the route
   reflector uses ORFs, then the ORFs have to be immediately changed to
   reflect the changes in the set. If the route reflector doesn't use
   ORFs, and a new Route Target is added to the set, the route
   reflector, after changing its inbound route filtering, must issue BGP
   Refresh to other router reflectors.

   A PE router (other than a Route Reflector) should not install a VPN-
   IPv4 route unless it has at least one VRF with an Import Target
   identical to one of the route's Route Target attributes.  Inbound
   filtering should be used to cause such routes to be discarded.  If a



Rosen, et al.                                                  [Page 17]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   new Import Target is later added to the PE, it must then acquire the
   routes it may previously have discarded.  This can be done using the
   refresh mechanism described in [BGP-RFSH].  The outbound route
   filtering mechanism of [BGP-ORF] can also be used to advantage to
   make the filtering more dynamic.

   A router which is not attached to any VPN, i.e., a P router, never
   installs any VPN-IPv4 routes at all.

   These distribution rules ensure that there is no one box which needs
   to know all the VPN-IPv4 routes that are supported over the backbone.
   As a result, the total number of such routes that can be supported
   over the backbone is not bounded by the capacity of any single
   device, and therefore can increase virtually without bound.


4.3.3. How VPN-IPv4 NLRI is Carried in BGP

   The BGP Multiprotocol Extensions [BGP-MP] are used to encode the
   NLRI.  If the AFI field is set to 1, and the SAFI field is set to
   128, the NLRI is an MPLS-labeled VPN-IPv4 address.  AFI 1 is used
   since the network layer protocol associated with the NLRI is still
   IP.  Note that this VPN architecture never distributes unlabeled
   VPN-IPv4 addresses.

   In order for two BGP speakers to exchange labeled VPN-IPv4 NLRI, they
   must use BGP Capabilities Negotiation to ensure that they both are
   capable of properly processing such NLRI.  This is done as specified
   in [BGP-MP], by using capability code 1 (multiprotocol BGP), with an
   AFI of 1 and an SAFI of 128.

   The labeled VPN-IPv4 NLRI itself is encoded as specified in [MPLS-
   BGP], where the prefix consists of an 8-byte RD followed by an IPv4
   prefix.


4.3.4. Building VPNs using Route Targets

   By setting up the Import Targets and Export Targets properly, one can
   construct different kinds of VPNs.

   Suppose it is desired to create a a fully meshed closed user group,
   i.e., a set of sites where each can send traffic directly to the
   other, but traffic cannot be sent to or received from other sites.
   Then each site is associated with a VRF, a single Route Target
   attribute is chosen, that Route Target is assigned to each VRF as
   both the Import Target and the Export Target, and that Route Target
   is not assigned to any other VRFs as either the Import Target or the



Rosen, et al.                                                  [Page 18]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   Export Target.

   Alternatively, suppose one desired, for whatever reason, to create a
   "hub and spoke" kind of VPN.  This could be done by the use of two
   Route Target values, one meaning "Hub" and one meaning "Spoke".  At
   the VRFs attached to the hub sites, "Hub" is the Export Target and
   "Spoke" is the Import Target.  At the VRFs attached to the spoke
   site, "Hub" is the Import Target and "Spoke" is the Export Target.

   Thus the methods for controlling the distribution of routing
   information among various sets of sites are very flexible, which in
   turn provides great flexibility in constructing VPNs.


5. Forwarding Across the Backbone

   If the intermediate routers in the backbone do not have any
   information about the routes to the VPNs, how are packets forwarded
   from one VPN site to another?

   This is done by means of MPLS with a two-level label stack.

   PE routers (and ASBRs which redistribute VPN-IPv4 addresses) need to
   insert /32 address prefixes for themselves into the IGP routing
   tables of the backbone.  This enables MPLS, at each node in the
   backbone network, to assign a label corresponding to the route to
   each PE router.  To ensure interoperability among different
   implementations, it is required to support LDP for setting up the
   label switched paths across the backbone.  However, other methods of
   setting up these label switched paths are also possible.  (Some of
   these other methods may not require the presence of the /32 address
   prefixes in the IGP.)

   When a PE receives a packet from a CE device, it chooses a particular
   VRF in which to look up the packet's destination address.  Assume
   that a match is found.

   If the packet's next hop is a CE device attached to this same PE, the
   packet is sent directly to that CE device,

   If the packet's next hop is NOT a CE device attached to this same PE,
   the packet's "BGP Next Hop" is found, as well as the label which that
   BGP next hop assigned for the packet's destination address. This
   label is pushed onto the packet's label stack, and becomes the bottom
   label.  Then the PE looks up the IGP route to the BGP Next Hop, and
   thus determines the IGP next hop, as well as the label assigned to
   the address of the BGP next hop by the IGP next hop.  This label gets
   pushed on as the packet's top label, and the packet is then forwarded



Rosen, et al.                                                  [Page 19]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   to the IGP next hop.  (If the BGP next hop is the same as the IGP
   next hop, the second label may not need to be pushed on, however.)

   At this point, MPLS will carry the packet across the backbone.  The
   egress PE router's treatment of the packet will depend on the label
   that was first pushed on by the ingress PE.  In many cases, the PE
   will be able to determine, from this label, the interface over which
   the packet should be transmitted (to a CE device), as well as the
   proper data link layer header for that interface.  In other cases,
   the PE may only be able to determine that the packet's destination
   address needs to be looked up in a particular VRF before being
   forwarded to a CE device.  Information in the MPLS header itself,
   and/or information associated with the label, may also be used to
   provide QoS on the interface to the CE.  In any event, when the
   packet finally gets to a CE device, it will again be an ordinary
   unlabeled IP packet.

   Note that it is the two-level labeling that makes it possible to keep
   all the VPN routes out of the P routers, and this in turn is crucial
   to ensuring the scalability of the model.  The backbone does not even
   need to have routes to the CEs, only to the PEs.

   To maintain proper isolation of one VPN from another, it is important
   that no router in the backbone accept a labeled packet from any
   adjacent non-backbone device unless (a) the label at the top of the
   label stack was actually distributed by the backbone router to the
   non-backbone device, and (b) the backbone router can determine that
   use of that label will cause the packet to leave the backbone before
   any labels lower in the stack will be inspected, and before the IP
   header will be inspected.  These restrictions are necessary in order
   to prevent packets from entering a VPN where they do not belong.


6. How PEs Learn Routes from CEs

   The PE routers which attach to a particular VPN need to know, for
   each of that VPN's sites, which addresses in that VPN are at each
   site.

   In the case where the CE device is a host or a switch, this set of
   addresses will generally be configured into the PE router attaching
   to that device.  In the case where the CE device is a router, there
   are a number of possible ways that a PE router can obtain this set of
   addresses.

   The PE translates these addresses into VPN-IPv4 addresses, using a
   configured RD.  The PE then treats these VPN-IPv4 routes as input to
   BGP.  In no case will routes from a site ever be leaked into the



Rosen, et al.                                                  [Page 20]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   backbone's IGP.

   Exactly which PE/CE route distribution techniques are possible
   depends on whether a particular CE is in a "transit VPN" or not.  A
   "transit VPN" is one which contains a router that receives routes
   from a "third party" (i.e., from a router which is not in the VPN,
   but is not a PE router), and that redistributes those routes to a PE
   router.  A VPN which is not a transit VPN is a "stub VPN".  The vast
   majority of VPNs, including just about all corporate enterprise
   networks, would be expected to be "stubs" in this sense.

   The possible PE/CE distribution techniques are:

      1. Static routing (i.e., configuration) may be used. (This is
         likely to be useful only in stub VPNs.)

      2. PE and CE routers may be RIP peers, and the CE may use RIP to
         tell the PE router the set of address prefixes which are
         reachable at the CE router's site.  When RIP is configured in
         the CE, care must be taken to ensure that address prefixes from
         other sites (i.e., address prefixes learned by the CE router
         from the PE router) are never advertised to the PE.  More
         precisely:  if a PE router, say PE1, receives a VPN-IPv4 route
         R1, and as a result distributes an IPv4 route R2 to a CE, then
         R2 must not be distributed back from that CE's site to a PE
         router, say PE2, (where PE1 and PE2 may be the same router or
         different routers), unless PE2 maps R2 to a VPN-IPv4 route
         which is different than (i.e., contains a different RD than)
         R1.

      3. The PE and CE routers may be OSPF peers.  A PE router which is
         an OSPF peer of a CE router appears, to the CE router, to be an
         area 0 router.  If a PE router is an OSPF peer of CE routers
         which are in distinct VPNs, the PE must of course be running
         multiple instances of OSPF.

         IPv4 routes which the PE learns from the CE via OSPF are
         redistributed into BGP as VPN-IPv4 routes.  Extended community
         attributes are used to carry, along with the route, all the
         information needed to enable the route to be distributed to
         other CE routers in the VPN in the proper type of OSPF LSA.
         OSPF route tagging is used to ensure that routes received from
         the MPLS/BGP backbone are not sent back into the backbone.

      4. The PE and CE routers may be BGP peers, and the CE router may
         use BGP (in particular, EBGP to tell the PE router the set of
         address prefixes which are at the CE router's site. (This
         technique can be used in stub VPNs or transit VPNs.)



Rosen, et al.                                                  [Page 21]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


         From a purely technical perspective, this is by far the best
         technique:

            a) Unlike the IGP alternatives, this does not require the PE
               to run multiple routing algorithm instances in order to
               talk to multiple CEs

            b) BGP is explicitly designed for just this function:
               passing routing information between systems run by
               different administrations

            c) If the site contains "BGP backdoors", i.e., routers with
               BGP connections to routers other than PE routers, this
               procedure will work correctly in all circumstances.  The
               other procedures may or may not work, depending on the
               precise circumstances.

            d) Use of BGP makes it easy for the CE to pass attributes of
               the routes to the PE.  For example, the CE may suggest a
               particular Target for each route, from among the Target
               attributes that the PE is authorized to attach to the
               route.

         On the other hand, using BGP is likely to be something new for
         the CE administrators, except in the case where the customer
         itself is already an Internet Service Provider (ISP).

         If a site is not in a transit VPN, note that it need not have a
         unique Autonomous System Number (ASN).  Every CE whose site
         which is not in a transit VPN can use the same ASN.  This can
         be chosen from the private ASN space, and it will be stripped
         out by the PE.  Routing loops are prevented by use of the Site
         of Origin Attribute (see below).

         What if a set of sites constitute a transit VPN?  This will
         generally be the case only if the VPN is itself an ISP's
         network, where the ISP is itself buying backbone services from
         another SP.  The latter SP may be called a "Carrier's Carrier".
         In this case, the best way to provide the VPN is to have the CE
         routers support MPLS, and to use the technique described in
         section 8.


   When we do not need to distinguish among the different ways in which
   a PE can be informed of the address prefixes which exist at a given
   site, we will simply say that the PE has "learned" the routes from
   that site.




Rosen, et al.                                                  [Page 22]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   Before a PE can redistribute a VPN-IPv4 route learned from a site, it
   must assign a Route Target attribute (see section 4.2.1) to the
   route, and it may assign a Site of Origin attribute to the route.

   The Site of Origin attribute, if used, is encoded as a Route Origin
   Extended Community [BGP-EXTCOMM].  The purpose of this attribute is
   to uniquely identify the set of routes learned from a particular
   site.  This attribute is needed in some cases to ensure that a route
   learned from a particular site via a particular PE/CE connection is
   not distributed back to the site through a different PE/CE
   connection.  It is particularly useful if BGP is being used as the
   PE/CE protocol, but different sites have not been assigned distinct
   ASNs.


7. How CEs learn Routes from PEs

   In this section, we assume that the CE device is a router.

   If the PE places a particular route in the VRF which is uses to route
   packets received from a particular CE, then in general, the PE may
   distribute that route to the CE.  Of course the PE may distribute
   that route to the CE only if this is permitted by the rules of the
   PE/CE protocol.  (For example, if a particular PE/CE protocol has
   "split horizon", certain routes in the VRF cannot be redistributed
   back to the CE.)  We add one more restriction on the distribution of
   routes from PE to CE: if a route's Site of Origin attribute
   identifies a particular site, that route must never be redistributed
   to any CE at that site.

   In most cases, however, it will be sufficient for the PE to simply
   distribute the default route to the CE.  (In some cases, it may even
   be sufficient for the CE to be configured with a default route
   pointing to the PE.)  This will generally work at any site which does
   not itself need to distribute the default route to other sites.
   (E.g., if one site in a corporate VPN has the corporation's access to
   the Internet, that site might need to have default distributed to the
   other site, but one could not distribute default to that site
   itself.)

   Whatever procedure is used to distribute routes from CE to PE will
   also be used to distribute routes from PE to CE.









Rosen, et al.                                                  [Page 23]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


8. Carriers' Carriers

   Sometimes a VPN may actually be the network of an ISP, with its own
   peering and routing policies.  Sometimes a VPN may be the network of
   an SP which is offering VPN services in turn to its own customers.
   VPNs like these can also obtain backbone service from another SP, the
   "carrier's carrier", using essentially the same methods described in
   this document.  In particular:

     - The CE routers should distribute to the PE routers only those
       routes which are internal to the VPN.  This allows the VPN to be
       handled as a stub VPN.

     - The CE routers should support MPLS, and should distribute to the
       PE routers labels for the internal routes that they distribute to
       the PEs.

     - The PE routers should distribute, to the CE routers, labels for
       the routes they distribute to the CE routers.

     - Routers at the different sites should establish BGP connections
       among themselves for the purpose of exchanging external routes.

     - All the external routes must be known to the CE routers.

   Then when a CE router looks up a packet's destination address, the
   routing lookup will resolve to an internal address, usually the
   address of the packet's BGP next hop.  The CE labels the packet
   appropriately and sends the packet to the PE.

   Note that the CE router itself need not know all the external routes
   if the other routers at the site also support MPLS.  All that is
   necessary is that MPLS labels can be pushed onto IP packets by the
   routes which do know the external routes, and that MPLS can be used
   to move the packets from those routers to the PE router.


9. Security

   Under the following conditions:

      a) labeled packets are not accepted by backbone routers from
         untrusted or unreliable sources, unless it is known that such
         packets will leave the backbone before the IP header or any
         labels lower in the stack will be inspected, and






Rosen, et al.                                                  [Page 24]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


      b) labeled VPN-IPv4 routes are not accepted from untrusted or
         unreliable sources,

   the security provided by this architecture is virtually identical to
   that provided to VPNs by Frame Relay or ATM backbones.

   It is worth noting that the use of MPLS makes it much simpler to
   provide this level of security than would be possible if one
   attempted to use some form of IP-within-IP tunneling in place of
   MPLS.  It is a simple matter to refuse to accept a labeled packet
   unless the first of the above conditions applies to it.  It is rather
   more difficult to configure a router to refuse to accept an IP packet
   if that packet is an IP-within-IP tunnelled packet which is going to
   a "wrong" place.

   The use of MPLS also allows a VPN to span multiple SPs without
   depending in any way on the inter-domain distribution of IPv4 routing
   information.


10. Quality of Service

   Although not the focus of this paper, Quality of Service is a key
   component of any VPN service.  In MPLS/BGP VPNs, existing L3 QoS
   capabilities can be applied to labeled packets through the use of the
   "experimental" bits in the shim header [MPLS-ENCAPS], or, where ATM
   is used as the backbone, through the use of ATM QoS capabilities.
   The traffic engineering work discussed in [MPLS-RSVP] is also
   directly applicable to MPLS/BGP VPNs.  Traffic engineering could even
   be used to establish label switched paths with particular QoS
   characteristics between particular pairs of sites, if that is
   desirable.  Where an MPLS/BGP VPN spans multiple SPs, the
   architecture described in [PASTE] may be useful.  An SP may apply
   either intserv or diffserv capabilities to a particular VPN, as
   appropriate.


11. Scalability

   We have discussed scalability issues throughout this paper.  In this
   section, we briefly summarize the main characteristics of our model
   with respect to scalability.

   The Service Provider backbone network consists of (a) PE routers, (b)
   BGP Route Reflectors, (c) P routers (which are neither PE routers nor
   Route Reflectors), and, in the case of multi-provider VPNs, (d)
   ASBRs.




Rosen, et al.                                                  [Page 25]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   P routers do not maintain any VPN routes.  In order to properly
   forward VPN traffic, the P routers need only maintain routes to the
   PE routers and the ASBRs. The use of two levels of labeling is what
   makes it possible to keep the VPN routes out of the P routers.

   A PE router maintains VPN routes, but only for those VPNs to which it
   is directly attached.

   Route reflectors and ASBRs can be partitioned among VPNs so that each
   partition carries routes for only a subset of the VPNs provided by
   the Service Provider. Thus no single Route Reflector or ASBR is
   required to maintain routes for all the VPNs.

   As a result, no single component within the Service Provider network
   has to maintain all the routes for all the VPNs.  So the total
   capacity of the network to support increasing numbers of VPNs is not
   limited by the capacity of any individual component.


12. Intellectual Property Considerations

   Cisco Systems may seek patent or other intellectual property
   protection for some of all of the technologies disclosed in this
   document. If any standards arising from this document are or become
   protected by one or more patents assigned to Cisco Systems, Cisco
   intends to disclose those patents and license them on reasonable and
   non-discriminatory terms.


13. Acknowledgments

   Significant contributions to this work have been made by Ravi
   Chandra, Dan Tappan and Bob Thomas.


14. Authors' Addresses


      Eric C. Rosen
      Cisco Systems, Inc.
      250 Apollo Drive
      Chelmsford, MA, 01824
      E-mail: erosen@cisco.com








Rosen, et al.                                                  [Page 26]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000



      Yakov Rekhter
      Cisco Systems, Inc.
      170 Tasman Drive
      San Jose, CA, 95134
      E-mail: yakov@cisco.com


      Stephen John Brannon
      Swisscom AG
      Postfach 1570
      CH-8301
      Glattzentrum (Zuerich), Switzerland
      E-mail: stephen.brannon@swisscom.com


      Marco Carugi
      France Telecom / CNET Research Centre
      IP networks and services
      CNET/DAC/NTR
      Technopole Anticipa
      2, av. P. Marzin
      22307 Lannion
      E-mail: marco.carugi@cnet.francetelecom.fr


      Christopher J. Chase
      AT&T
      200 Laurel Ave
      Middletown, NJ 07748
      USA
      E-mail: chase@att.com


      Eric Dean
      Global One
      12490 Sunrise Valley Dr.
      Reston, VA 20170 USA
      E-mail: edean@gip.net


      Paul Hitchin
      BT
      BT Adastral Park
      Martlesham Heath,
      Ipswich IP5 3RE
      UK
      E-mail: paul.hitchen@bt.com



Rosen, et al.                                                  [Page 27]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000



      Manoj Leelanivas
      Juniper Networks, Inc.
      385 Ravendale Drive
      Mountain View, CA 94043 USA
      E-mail: manoj@juniper.net


      Luca Martini
      Level 3 Communications, LLC.
      1025 Eldorado Blvd.
      Broomfield, CO, 80021
      E-mail: luca@level3.net


      Monique Jeanne Morrow
      Swisscom AG
      Postfach 1570
      CH-8301
      Glattzentrum (Zuerich), Switzerland
      E-mail: monique.morrow@swisscom.com


      Adrian Smith
      BT
      BT Adastral Park
      Martlesham Heath,
      Ipswich IP5 3RE
      UK
      E-mail: adrian.ca.smith@bt.com


      Vijay Srinivasan
      Ericsson IP Infrastructure
      920 Main Campus Drive, Suite 500
      Raleigh, NC 27606
      E-mail: vijay@torrentnet.com


      Alain Vedrenne
      SITA EQUANT
      3100 Cumberland Blvd, Suite 200
      Atlanta, GA, 30339 USA
      Email:Alain.Vedrenne@sita.int
            Alain.Vedrenne@equant.com






Rosen, et al.                                                  [Page 28]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


15. References

   [BGP-MP] Bates, Chandra, Katz, and Rekhter, "Multiprotocol Extensions
   for BGP4", February 1998, RFC 2283

   [BGP-EXTCOMM] Ramachandra, Tappan, "BGP Extended Communities
   Attribute", February 2000, work in progress

   [BGP-ORF] Chen, Rekhter, "Cooperative Route Filtering Capability for
   BGP-4", February 2000, work in progress

   [BGP-RFSH] Chen, "Route Refresh Capability for BGP-4", December,
   1999, work in progress

   [BGP-RR] Bates and Chandrasekaran, "BGP Route Reflection: An
   alternative to full mesh IBGP", RFC 1966, June 1996

   [IPSEC] Kent and Atkinson, "Security Architecture for the Internet
   Protocol", November 1998, RFC 2401

   [MPLS-ARCH] Rosen, Viswanathan, and Callon, "Multiprotocol Label
   Switching Architecture", August 1999, work in progress

   [MPLS-BGP] Rekhter and Rosen, "Carrying Label Information in BGP4",
   January 2000, work in progress

   [MPLS-LDP] Andersson, Doolan, Feldman, Fredette, Thomas, "LDP
   Specification", October 1999, work in progress

   [MPLS-ENCAPS] Rosen, Rekhter, Tappan, Farinacci, Fedorkow, Li, and
   Conta, "MPLS Label Stack Encoding", September 1999, work in progress

   [MPLS-RSVP] Awduche, Gan, Li, Swallow, and Srinavasan, "Extensions to
   RSVP for LSP Tunnels", September, 1999, work in progress

   [PASTE] Li and Rekhter, "A Provider Architecture for Differentiated
   Services and Traffic Engineering (PASTE)", RFC 2430, October 1998.


16. Full Copyright Statement

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are



Rosen, et al.                                                  [Page 29]



Internet Draft       draft-rosen-rfc2547bis-00.txt            March 2000


   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

































Rosen, et al.                                                  [Page 30]