Now let's apply the Blackman window to the sampled sinusoid and look at the effect on the spectrum analysis:
% Windowed, zero-padded data:
n = [0:M-1]; % discrete time axis
f = 0.25 + 0.5/M; % frequency
xw = [w .* cos(2*pi*n*f),zeros(1,(zpf-1)*M)];
% Smoothed, interpolated spectrum:
X = fft(xw);
% Plot time data:
subplot(2,1,1);
plot(xw);
title('Windowed, Zero-Padded, Sampled Sinusoid');
xlabel('Time (samples)');
ylabel('Amplitude');
text(-50,1,'a)');
% Plot spectral magnitude:
spec = 10*log10(conj(X).*X); % Spectral magnitude in dB
spec = max(spec,-60*ones(1,nfft)); % clip to -60 dB
subplot(2,1,2);
plot(fninf,fftshift(spec),'-');
axis([-0.5,0.5,-60,40]);
title('Smoothed, Interpolated, Spectral Magnitude (dB)');
xlabel('Normalized Frequency (cycles per sample))');
ylabel('Magnitude (dB)'); grid;
text(-.6,40,'b)');
Figure 8.6 plots the zero-padded, Blackman-windowed sinusoid,
along with its magnitude spectrum on a dB scale. Note that the first
sidelobe (near