Circular Motion Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Circular Motion

Since the modulus of the complex sinusoid is constant, it must lie on a circle in the complex plane. For example,

$\displaystyle x(t) = e^{j\omega t}
$

traces out counter-clockwise circular motion along the unit circle in the complex plane as $ t$ increases, while

$\displaystyle \overline{x(t)} = e^{-j\omega t}
$

gives clockwise circular motion.

We may call a complex sinusoid $ e^{j\omega t}$ a positive-frequency sinusoid when $ \omega>0$. Similarly, we may define a complex sinusoid of the form $ e^{-j\omega t}$, with $ \omega>0$, to be a negative-frequency sinusoid. Note that a positive- or negative-frequency sinusoid is necessarily complex.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]