Complex Sinusoids Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Complex Sinusoids

Recall Euler's Identity,

$\displaystyle e^{j\theta} = \cos(\theta) + j\sin(\theta).
$

Multiplying this equation by $ A \geq 0$ and setting $ \theta = \omega t
+
\phi$, where $ t$ is time in seconds, $ \omega$ is radian frequency, and $ \phi$ is a phase offset, we obtain what we call the complex sinusoid:

$\displaystyle s(t) \isdef A e^{j(\omega t+\phi)} = A \cos(\omega t+\phi) + jA\sin(\omega t+\phi)
$

Thus, a complex sinusoid consists of an ``in-phase'' component for its real part, and a ``phase-quadrature'' component for its imaginary part. Since $ \sin^2(\theta) + \cos^2(\theta) = 1$, we have

$\displaystyle \left\vert s(t)\right\vert \isdef \sqrt{\mbox{re}^2\left\{s(t)\right\} + \mbox{im}^2\left\{s(t)\right\}} \equiv A.
$

That is, the complex sinusoid has a constant modulus (i.e., a constant complex magnitude). (The symbol ``$ \equiv$'' means ``identically equal to,'' i.e., for all $ t$.) The instantaneous phase of the complex sinusoid is

$\displaystyle \angle s(t) = \omega t+\phi.
$

The derivative of the instantaneous phase of the complex sinusoid gives its instantaneous frequency

$\displaystyle \frac{d}{dt}\angle s(t) = \omega = 2\pi f.
$



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]