Example: Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search
Example:
Going back to our simple 2D example $ x=[2, 3]$, we can compute its norm as $ \Vert x\Vert = \sqrt{2^2 + 3^2} = \sqrt{13} =
3.6056\ldots\,$. The physical interpretation of the norm as a distance measure is shown in Fig.5.5.

Figure 5.5: Geometric interpretation of a signal norm in 2D.
\includegraphics[scale=0.7]{eps/vec2dlen}

Figure 5.6: Length of vectors in sum.
\includegraphics[scale=0.7]{eps/vecsumdist}


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]