Repeat Operator Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Repeat Operator

Like the $ \hbox{\sc Stretch}_L()$ and $ \hbox{\sc Interp}_L()$ operators, the $ \hbox{\sc Repeat}_L()$ operator maps a length $ N$ signal to a length $ M\isdeftext LN$ signal:



Definition: The repeat $ L$ times operator is defined for any $ x\in{\bf C}^N$ by

$\displaystyle \hbox{\sc Repeat}_{L,m}(x) \isdef x(m), \qquad m=0,1,2,\ldots,M-1,
$

where $ M\isdef LN$, and indexing of $ x$ is modolu $ N$ (periodic extension). Thus, the $ \hbox{\sc Repeat}_L()$ operator simply repeats its input signal $ L$ times.7.7 An example of $ \hbox{\sc Repeat}_2(x)$ is shown in Fig.7.8. The example is

$\displaystyle \hbox{\sc Repeat}_2([0,2,1,4,3,1]) = [0,2,1,4,3,1,0,2,1,4,3,1].
$

Figure 7.8: Illustration of $ \hbox{\sc Repeat}_2(x)$.
\includegraphics[width=\textwidth]{eps/repeat}

A frequency-domain example is shown in Fig.7.9. Figure 7.9a shows the original spectrum $ X$, Fig.7.9b shows the same spectrum plotted over the unit circle in the $ z$ plane, and Fig.7.9c shows $ \hbox{\sc Repeat}_3(X)$. The $ z=1$ point (dc) is on the right-rear face of the enclosing box. Note that when viewed as centered about $ k=0$, $ X$ is a somewhat ``triangularly shaped'' spectrum. We see three copies of this shape in $ \hbox{\sc Repeat}_3(X)$.

Figure 7.9: Illustration of $ \hbox{\sc Repeat}_3(X)$. a) Conventional plot of $ X$. b) Plot of $ X$ over the unit circle in the $ z$ plane. c) $ \hbox{\sc Repeat}_3(X)$.
\includegraphics[width=4in]{eps/repeat3d}

The repeat operator is used to state the Fourier theorem

$\displaystyle \hbox{\sc Stretch}_L \;\longleftrightarrow\;\hbox{\sc Repeat}_L,
$

where $ \hbox{\sc Stretch}_L$ is defined in §7.2.6. That is, when you stretch a signal by the factor $ L$, its spectrum is repeated $ L$ times around the unit circle. The simple proof is given on page page [*].


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]