Complex Sinusoids Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

### Complex Sinusoids

Using Euler's identity to represent sinusoids, we have (2.9)

when time is continuous (see §A.1 for a list of notational conventions), and when time is discrete, (2.10)

Any function of the form or will henceforth be called a complex sinusoid.2.3 We will see that it is easier to manipulate both sine and cosine simultaneously in this form than it is to deal with either sine or cosine separately. One may even take the point of view that is simpler and more fundamental than or , as evidenced by the following identities (which are immediate consequences of Euler's identity, Eq. (1.8)):   (2.11)   (2.12)

Thus, sine and cosine may each be regarded as a combination of two complex sinusoids. Another reason for the success of the complex sinusoid is that we will be concerned only with real linear operations on signals. This means that in Eq. (1.8) will never be multiplied by or raised to a power by a linear filter with real coefficients. Therefore, the real and imaginary parts of that equation are actually treated independently. Thus, we can feed a complex sinusoid into a filter, and the real part of the output will be the cosine response and the imaginary part of the output will be the sine response. For the student new to analysis using complex variables, natural questions at this point include Why ?, Where did the imaginary exponent come from? Are imaginary exponents legal?'' and so on. These questions are fully answered in  and elsewhere [53,14]. Here, we will look only at some intuitive connections between complex sinusoids and the more familiar real sinusoids.

Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]