Butterworth Lowpass Filter Example Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Butterworth Lowpass Filter Example

This example illustrates the design of a 5th-order Butterworth lowpass filter, implementing it using second-order sections. Since all three sections contribute to the same passband and stopband, it is numerically advisable to choose a series second-order-section implementation, so that their passbands and stopbands will multiply together instead of add.

fc = 1000; % Cut-off frequency (Hz)
fs = 8192; % Sampling rate (Hz)
order = 5; % Filter order
[B,A] = butter(order,2*fc/fs); % [0:pi] maps to [0:1] here
[sos,g] = tf2sos(B,A)
% sos =
%  1.00000  2.00080   1.00080  1.00000  -0.92223  0.28087
%  1.00000  1.99791   0.99791  1.00000  -1.18573  0.64684
%  1.00000  1.00129  -0.00000  1.00000  -0.42504  0.00000
% 
% g = 0.0029714
%
% Compute and display the amplitude response
Bs = sos(:,1:3); % Section numerator polynomials
As = sos(:,4:6); % Section denominator polynomials
[nsec,temp] = size(sos);
nsamps = 256; % Number of impulse-response samples
% Note use of input scale-factor g here:
x = g*[1,zeros(1,nsamps-1)]; % SCALED impulse signal
for i=1:nsec
  x = filter(Bs(i,:),As(i,:),x); % Series sections
end
%
%plot(x); % Plot impulse response to make sure 
          % it has decayed to zero (numerically)
%
% Plot amplitude response 
% (in Octave - Matlab slightly different):
figure(2);
X=fft(x); % sampled frequency response
f = [0:nsamps-1]*fs/nsamps; grid('on');
axis([0 fs/2 -100 5]); legend('off');
plot(f(1:nsamps/2),20*log10(X(1:nsamps/2)));
The final plot appears in Fig.9.7. A Matlab function for frequency response plots is given in §H.4. (Of course, one can also use freqz in either Matlab or Octave, but that function uses subplots which are not easily printable in Octave.)

Note that the Matlab Signal Processing Tool Box has a function called sosfilt so that ``y=sosfilt(sos,x)'' will implement an array of second-order sections without having to unpack them first as in the example above.

Figure 9.7: Measured amplitude response of three second-order sections (in series) implementing a 5th order Butterworth lowpass filter with half-power point at $ f_c=1$ kHz.
\includegraphics[width=0.8\twidth]{eps/buttlpex}


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (August 2006 Edition).
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]